References

1. Yahiro, A.T., S.M. Lee, and D.O. Kimble, Bioelectrochemistry .I. Enzyme Utilizing Bio-Fuel Cell Studies. Biochimica Et Biophysica Acta, 1964. 88(2): p. 375-&.

2. Turner, A.P.F., et al., Applied Aspects of Bioelectrochemistry - Fuel-Cells, Sensors, and
Bioorganic Synthesis. Biotechnology and Bioengineering, 1982: p. 401-412.

3. Palmore, G.T.R. and G.M. Whitesides, Microbial and Enzymatic Biofuel Cells, in
Enzymatic Conversion of Biomass for Fuels Production. 1994. p. 271-290.

4. Tanisho, S., N. Kamiya, and N. Wakao, Microbial Fuel-Cell Using Enterobacter-
Aerogenes. Bioelectrochemistry and Bioenergetics, 1989. 21(1): p. 25-32.

5. F.D., S., Biochemical Fuel Cells. 1971. 9: p. 1-11.

6. Suzuki, S., et al., Biochemical Energy-Conversion by Immobilized Whole Cells. Annals
of the New York Academy of Sciences, 1983. 413(DEC): p. 133-143.

7. Willner, I. and B. Willner, Biomaterials integrated with electronic elements: en route to
bioelectronics. Trends in Biotechnology, 2001. 19(6): p. 222-230.

8. Ruzgas, T., et al., Peroxidase-modified electrodes: Fundamentals and application.
Analytica Chimica Acta, 1996. 330(2-3): p. 123-138.

9. Willner, I. and E. Katz, Integration of layered redox proteins and conductive supports for
bioelectronic applications. Angewandte Chemie-International Edition, 2000. 39(7): p.
1180-1218.

10. Zhang, X., et al., Nuclear expression of an environmentally friendly synthetic protein
based polymer gene in tobacco cells. Biotechnology Letters, 1995. 17(12): p. 1279-1284.

11. Heller, A., Electrical Wiring of Redox Enzymes. Accounts of Chemical Research, 1990.
23(5): p. 128-134.

12. Heller, A., Miniature biofuel cells. Physical Chemistry Chemical Physics, 2004. 6(2): p.
209-216.

13. Maa, Y.F., P.A. Nguyen, and C.C. Hsu, Spray-coating of rhDNase on lactose: Effect of
system design, operational parameters and protein formulation. International Journal of
Pharmaceutics, 1996. 144(1): p. 47-59.

14. Katz, E. and I. Willner, Probing biomolecular interactions at conductive and
semiconductive surfaces by impedance spectroscopy: Routes to impedimetric
immunosensors, DNA-Sensors, and enzyme biosensors. Electroanalysis, 2003. 15(11): p.
913-947.

15. Barton, S.C., J. Gallaway, and P. Atanassov, Enzymatic biofuel cells for Implantable and
microscale devices. Chemical Reviews, 2004. 104(10): p. 4867-4886.

16. Willner, I., et al., Electrical wiring of glucose oxidase by reconstitution of FAD-modified
monolayers assembled onto Au-electrodes. Journal of the American Chemical Society,
1996. 118(42): p. 10321-10322.

17. Barton, S.C., et al., Electroreduction of O-2 to water on the "Wired" laccase cathode.
Journal of Physical Chemistry B, 2001. 105(47): p. 11917-11921.
18. Barton, S.C., et al., The "wired" laccase cathode: High current density electroreduction
of O-2 to water at+0.7 V (NHE) at pH 5. Journal of the American Chemical Society,
2001. 123(24): p. 5802-5803.

19. Soukharev, V., N. Mano, and A. Heller, A four-electron O-2-electroreduction biocatalyst
superior to platinum and a biofuel cell operating at 0.88 V. Journal of the American
Chemical Society, 2004. 126(27): p. 8368-8369.