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Abstract. Cell therapy is a new concept to repair diseased

organs. For patients with myocardial infarction, heart fail-

ure, and congenital heart diseases cell based therapies

might represent a potential cure. The field can be subdi-

vided into two principally different approaches: (1) Implan-

tation of isolated cells and (2) implantation of in vitro en-

gineered tissue constructs. This review will focus on the

latter approach. Cardiac tissue engineering comprises the

fields of material sciences and cell biology. In general, scaf-

fold materials such as gelatin, collagen, alginate, or syn-

thetic polymers and cardiac cells are utilized to reconsti-

tute tissue-like constructs in vitro. Ideally, these constructs

display properties of native myocardium such as coherent

contractions, low diastolic tension, and syncytial propaga-

tion of action potentials. To be applicable for surgical re-

pair of diseased myocardium engineered tissue constructs

should have the propensity to integrate and remain contrac-

tile in vivo. Size and mechanical properties of engineered

constructs are critical for surgical repair of large tissue de-

fects. Successful application of tissue engineering in men

will depend on the utilization of an autologous or non-

immunogeneic cell source and scaffold material to avoid life

long immunosuppression. This review will give an overview

of recent approaches in cardiac tissue engineering and its

first applications in vivo. We will discuss materials and cell

sources for cardiac tissue engineering. Further, principle

obstacles will be addressed. Cardiac tissue engineering for

replacement therapy has an intriguing perspective, but is

in its early days. Its true value remains to be thoroughly

evaluated.
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Introduction

Heart disease is the number one cause of death in
industrialized nations. Myocardial infarction and
heart failure resemble the most prevalent patholo-
gies. In either case, loss of cardiac myocytes ac-
counts for a decrease in myocardial function which
can lead to total organ failure or trigger compen-
satory mechanisms like hypertrophy of the re-
maining myocardium, activation of neurohumoral
systems, and autokrine/parakrine stimulation by
various growth factors/cytokines. Conservative
treatment of heart failure has focused on reduc-
tion of work load (diuretics, nitrates) and pro-

tection from humoral factors like catecholamines
(β-blockers), angiotensin (ACE-inhibitors, AT1-
receptor blockers), and aldosterone (spironolac-
tone). In end stage heart failure heart transplan-
tation remains the last treatment option with good
long-term results [1]. Unfortunately, heart trans-
plantation is limited due to an inadequate supply
with donor organs. Despite elaboration of phar-
macological and surgical treatment, numbers of
patients with heart failure are increasing. Thus,
there is an obvious need to improve traditional
treatment and develop new strategies to cope with
heart failure in the future.

Restoration of heart function by replacement
of diseased myocardium with functional cardiac
myocytes is an intriguing strategy because it of-
fers a potential cure [2]. The principal feasibility
of cell implantation in the heart has been con-
firmed nearly 10 years ago [3–5]. Different groups
could reproduce and refine these pioneer exper-
iments and have enlarged our knowledge about
the fate of implanted cells of various origin in
the myocardium of healthy and diseased hearts
[6–18]. Most studies support the notion that cell
implantation in models of myocardial infarction
can improve contractile, mostly diastolic, function.
Presently, clinical studies are under way to inves-
tigate the safety and feasibility of cell implanta-
tion in patients [14].

An alternative approach to injection or infu-
sion of isolated cells into the heart is the design
of artificial cardiac muscle constructs in vitro for
later implantation in vivo. So far, various meth-
ods to produce 3D cardiac tissue constructs have
been developed [19–34]. First studies indicate that
engineered heart muscle constructs can be suc-
cessfully implanted in vivo [23,25,28,30,31,33,34].
This review aims to overview the young field of
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cardiac tissue engineering. Scaffold materials, cell
sources, and culture conditions as well as major
obstacles of the field will be discussed. Finally,
we will try to give a necessarily subjective and
speculative perspective on the clinical relevance
of cardiac tissue engineering based therapies in
the future.

State-of-the-Art in Cardiac
Tissue Engineering

Early studies from Bader and Oberpriller demon-
strated the regenerative capacity of amphibian
hearts after autologous implantation of minced
ventricular tissue samples into injured newt
hearts [35]. In this study a partial regeneration
of injured newt ventricles was observed. However,
grafted tissue fragments remained morphologi-
cally and functionally separate from the native
myocardium. In mammals, were the regenera-
tive capacity is lost or at least markedly reduced,
Leor et al. [36] could show that tissue fragments
from fetal myocardium of rats and humans can
be transplanted into rat heart muscle and sur-
vived for up to 65 days in situ [36]. These early
experiments to replace myocardium with cardiac
tissue have been extended by true tissue engi-
neering approaches. Different groups including
our own could demonstrate that cardiac myocytes
from neonatal rats and embryonic chicken can be
reconstituted to three-dimensional tissue-like con-
structs [19–23,25–27,29–32]. Different strategies
to engineer cardiac tissue constructs have been
employed: (1) Seeding of preformed matrices with
cardiac cells, (2) culture of cardiac cells in primar-
ily soluble matrices, and (3) stacking of monolay-
ers of cardiac cells (Fig. 1).

Fig. 1. Strategies in Cardiac Tissue Engineering. (A) Seeding of preformed collagen fleeces yields Artificial Myocardial Tissue [29].
(B) A mixture of solubilized collagen type I, matrigel, and cardiac myocytes coalesces to form Engineered Heart Tissue [32]. (C)
Stacking of detached cardiac myocyte monolayers yields cardiac tissue sandwich constructs [31]. Figure was adapted from Kofidis
et al. In vitro engineering of heart muscle: artificial heart muscle. J Thorac Cardiovasc Surg 2002;124:63–69 (A), Zimmermann
et al. Tissue engineering of a differentiated cardiac muscle contstruct. Circ Res 2002;90:223–230 (B), and Shimizu et al.
Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and
temperature-responsive cell culture surfaces. Circ Res 2002;90:e40 (C) with permission.

Seeding of preformed matrices resembles the
classical tissue engineering approach which has
been proposed by Langer and Vacanti [37] in the
early 90’s. The most prevalent advantage of this
approach is that at least in theory matrix con-
structs can be formed in every shape and size and
potentially even as whole organs. These non-vital
matrices could then be vitalized by cell seeding
onto or into the constructs. Successful application
of this concept has been reported for reconstitu-
tion of cartilage, bone, liver, intestine, and urologic
tissues [38]. In cardiovascular tissue engineering
the construction of artificial valves and vessels has
been quite successful and is on the verge of be-
ing introduced into clinical trials [39–42]. In con-
trast to the aforementioned tissues, utilization of
preformed matrices to engineer myocardium has
been rather disappointing so far. Mainly, lack of
contractile function, poor tissue morphology, and
size limitations have been set backs in the field.
Several reasons might account for the failure of
the classical tissue engineering approach in car-
diac tissue engineering: (1) Engineered matrices
resemble diffusion barriers and limit nutrition
and oxygen supply in thick constructs (>100–
200 µm); (2) currently employed scaffolds do not
support the organization of cardiac cells in three-
dimensional cardiac tissue constructs in vitro; (3)
differentiation of cardiac myocytes in preformed
matrices is not driven to an adult phenotype; (4)
contractile function and actively developed forces
of tissue constructs are modest or not detectable
[20–23,25,26,29].

An alternative to preformed matrices is the uti-
lization of solubilized scaffold material. We could
demonstrate that collagen type I and extracellu-
lar matrix proteins when mixed with freshly iso-
lated heart cells coalesce to strongly contracting
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Fig. 2. Construction of Engineered Heart Tissue. (A) Utilization of casting molds in different shape and size allows construction of
EHT with variable geometry. Circular shape was found to be superior to planar EHT constructs. In planar EHTs a high cell density
was observed at the concave edges (arrows), whereas the centers were only sparsely populated. In circular EHTs cells are equally
contributed throughout the matrix. Addition of matrigel (B; n= 12–24), culture under mechanical load (C; n= 12–16), and
utilization of a mixed (native) rather then purified cell population (D; n= 13–17) yields improved contractile function and
morphology. Adapted from [26,30,31] and own unpublished data. Bars in (A): 10 mm in upper panels; 1 mm in lower panels.
∗ p< 0.05 vs. 5% (B), unstretched EHTs (C), and EHTs prepared from purified cell populations (D).

and highly differentiated Engineered Heart Tis-
sue (EHT) [19,24,27,32,34]. The geometric shape
of EHT can be altered by utilization of suitable
casting molds (square, circular; Fig. 2(a)). We
found that 4 factors are important to reconstitute
strongly contracting EHT: (1) Addition of matrigel
to the reconstitution mixture (only in rat EHT)
[27] (Fig. 2(b)), (2) EHT culture under mechanical
load [24] (Fig. 2(c)), (3) a circular shape, in con-
trast to EHT patches [27,32], (4) utilization of
cell mixtures rather than purified cardiac my-
ocyte populations [43] (Fig. 2(d)). Under these con-
ditions strongly contracting (up to 3 mN/mm2)
and morphologically highly differentiated muscle
constructs can be engineered with sarcomeres in
registry, a well organized sarcoplasmic reticulum
and T-tubular system, and volume fractions com-
parable to differentiated cardiac myocytes [32].
Non-myocytes add organoid features like an endo-
epicardial surface lining and formation of capillar-
ies by endothelial cells. Recent studies confirmed
that EHT can be implanted in vivo and remain

contractile for up to 8 weeks [34]. In situ, en-
hanced vascularization of EHT was observed. Ad-
ditionally, implanted EHTs were innervated with
nerve bundles containing myelinated and non-
myelinated fibers. Formation of capillaries in vitro
and later vascularization in vivo are desirable to
prevent ischemic cell damage or death, especially
in the core zone of thick engineered constructs.
Despite capillarization/vascularization of EHT,
thickness of single muscle bundles did hardly in-
crease above the critical diameter of ∼100 µm.
This is in line with most efforts in cardiac tissue
engineering [22,26]. In contrast to the latter ap-
proaches, muscle bundles in EHT were not limited
to the surface area but could be found through-
out EHT where a formation of a highly intercon-
nected muscular network was observed. This ap-
pears to indicate that the collagen-based EHT ma-
trix is no significant diffusion barrier but also that
beating cardiac muscle aggregates in vitro might
be generally limited to ∼100 µm in diameter. The
latter limit is no surprise given a physiological
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intercapillary distance of <20 µm in rat my-
ocardium [44] and the lack of a comparable cap-
illary system in all presently available engineered
cardiac muscle constructs. The benefit of EHT in-
nervation in vivo is presently unknown but could
indicate further integration of EHT into the recip-
ient’s organ architecture. Whether true functional
integration occurred with syncytial propagation of
action potentials from host to graft leading to in
unison contractions remains to be elucidated. De-
spite some indications for graft and host cell cou-
plings via connexin 43 [31] we believe that true
electrical coupling needs to be confirmed by elec-
trophysiological means. Another inherent problem
to all cell based therapy approaches is the need
for unmistakable labeling of implanted cells to al-
low detection in vivo. Electrophysiological studies,
labeling experiments, and utilization of EHT to
repair infarcted myocardium are presently under
investigation.

Recently, Shimizu and coworkers have demon-
strated that cardiac muscle constructs can be engi-
neered without scaffold materials [31]. This group
developed a technique to detach monolayer cell
cultures from a temperature sensitive culture sur-
face substratum. After stacking of up to 4 de-
tached monolayers connexin 43 junctions formed
between the cell layers and strong in unison con-
tractions of the sandwich constructs could be ob-
served. Additionally, these composed constructs
survived after subcutaneous implantation. This
technique has the obvious advantage that differ-
ent cell types could be stacked systematically to
yield an organoid tissue culture consisting of all
cell species that make up the myocardium physi-
ologically [45]. For example, addition of endothe-
lial cells might facilitate the induction of vascular-
ization and fibroblasts may increase the stability
of engineered constructs by producing extracellu-
lar matrix. At present it is not clear how much
matrix is helpful and the surprisingly strong con-
tractile force (1.2 mN) of the sandwich constructs
in the absence of scaffold material [31] may indi-
cate that matrix materials can be counterproduc-
tive in the effort to engineer contracting cardiac
tissue. Indeed, this is supported by our own ex-
periments. Contractile force of EHTs was found to
be inversely correlated with EHT collagen content
(Fig. 3). On the other hand, a reduction of collagen
content below 0.5 mg/ml deteriorated mechani-
cal stability. Similarly, even a single monolayer
of cardiac myocytes, spontaneously detached from
the culture dish after prolonged culture in serum-
containing medium, developed forces of 0.1 mN,
but did not allow prolonged measurements in the
organ bath due to mechanical instability (own un-
published observation).

In addition to applications in replacement ther-
apy engineered cardiac tissue constructs may be

Fig. 3. Scaffold Material Attenuates Contractile Function of
Engineered Heart Tissue. EHTs were reconstituted with
increasing collagen content (0.4–0.85 mg/EHT). Twitch
tension at maximal calcium (1.8 mmol/l) was reduced at high
collagen content and maximal at ∼0.5–0.7 mg/EHT. A
collagen content <0.5 mg/EHT results in EHT of weak
consistency (not shown). To increase mechanical stability and
retain strongly contracting EHTs, a collagen content of
0.7–0.8 mg/EHT was found to be optimal. Adapted from [24].
P < 0.01 by Spearman Rank Correlation.

useful for in vitro studies. Bursac and cowork-
ers employed preformed matrix based constructs
for electrophysiological studies [21]. In our labora-
tory EHTs have been utilized as an in vitro heart
model to investigate consequences of acute and
chronic mechanical, pharmacological, or molecu-
lar manipulations on cardiac myocyte contractility
[24,27,32,46].

Scaffold Material in Cardiac
Tissue Engineering

Different approaches in cardiac tissue engineer-
ing can be subdivided by their utilization of scaf-
fold material in (1) methods that use preformed
matrices, (2) methods that use solubilized scaffold
materials, and (3) methods that do not rely on ad-
dition of scaffolds. A broad range of synthetic poly-
mers such as polyglycolic acid, polylactic acid, or
polyethylenglycerol and biomaterials such as algi-
nate, collagen, or gelatine have been employed in
tissue engineering and have been extensively re-
viewed elsewhere [38,47–49]. In general scaffold
materials should be non-toxic, biodegradable, and
biocompatible.

The main advantages of synthetic polymers are
(1) defined chemical properties without batch-to-
batch variations inherent to the production of
biomaterials, (2) reduced or absent immune re-
sponses, (3) precise design of mechanical prop-
erties and geometric form, and (4) the potential
for defined integration and a time-controlled re-
lease of bioactive compounds from the matrix. On
the other hand, synthetic polymers are necessarily
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unphysiological and can only serve as a mechan-
ical scaffold to hold and guide cells in the 3-
dimensional space until they produce their own
physiological matrix environment. Additionally,
biodegradation of synthetic polymers can induce
inflammatory responses to the original material
or byproducts of its degradation [47]. A drop in
local pH upon degradation of polylactic and polyg-
lycolic acid based synthetic tissues has also to be
considered as potentially harmful to surrounding
cells [50]. By manipulation of chemical and phys-
ical properties of synthetic polymers formation of
harmful byproducts and inflammatory responses
might be reduced [50].

Biomaterials are naturally occurring extra-
cellular matrix components that can be chosen
according to the desired application. At least the-
oretically, they could represent “the right ma-
terial at the right place”. Yet, the physiologi-
cal complexity of extracellular matrix composition
makes it difficult to mimic “an organ-specific en-
vironment” experimentally. It is not clear, there-
fore, whether biomaterials as currently employed,
serve a more specific purpose than synthetic scaf-
folds. Biomaterials may have an advantage of in-
ducing only mild inflammatory responses in vivo.
On the other hand, the composition of biomate-
rials strongly depend on the isolation procedure
and exhibits batch-to-batch variations. A varying
content of other extracellular matrix components
and growth factors can exert desired and unde-
sired effects on tissue formation that are difficult
to define.

When compared to other already quite success-
ful tissue engineering approaches such as artifi-
cial cartilage or skin, tissue engineering of cardiac
muscle meets a number of additional specific tasks
that remain serious hurdles. (1) Cardiac myocytes,
in contrast to chondrocytes, are ischemia-sensitive
and therefore the matrix should allow unhindered
diffusion. It is important to consider that the heart
is one of the organs with the highest perfusion and
oxygen extraction rate. (2) The dynamic action of
the myocardium requires high flexibility, extensi-
bility and at the same time high mechanical sta-
bility and endurance of scaffolds. Matrix compo-
nents should not only serve as a static attachment
substratum but provide a dynamic link that trans-
fers load from the surrounding environment to the
cells and from the cells to the surrounding environ-
ment. (3) The heart exhibits a highly complex ar-
chitecture in which muscle strands are organized
in various inner and outer layers that are interwo-
ven in all three dimensions. Since differentiated
cardiac myocytes cannot migrate an optimal ma-
trix should allow complex 3D design.

It is apparent that none of the current materi-
als or approaches fulfills these criteria. Whereas
classical tissue engineering approaches aim at op-

timizing scaffold materials towards these require-
ments, alternative approaches exist. One is to use
scaffolds that are derived from intact organs of
donor animals that are decellularized and repop-
ulated with host-derived cells. This approach has
been proposed for engineering cardiac valves [51].
Another alternative is the sandwich technique de-
scribed above which allows the construction of tis-
sue patches of various size [31]. Omission of scaf-
fold material minimizes material-derived prob-
lems, but may compromise mechanical stability.
The latter limitation could be potentially overcome
by addition of fibroblast layers.

Our own approach follows a different concept.
Here the initially liquid matrix (collagen I and ma-
trigel) quickly forms a gel that “traps” the cells
in the 3D space and appears to provide a 3D en-
vironment that is rapidly remodeled by the car-
diac cells. Recent experiments have shown that
several matrix metalloproteases are dramatically
induced (up to 1000-fold) in EHT (own unpub-
lished data). This process is rapid and transient
over the first days after casting of the collagen/cell
mix. We also found significant formation of new
extracellular matrix such as organized collagen
fibrils and a complete basal membran around car-
diac myocytes [32]. Thus, we believe that cardiac
cells from neonatal rats have the intrinsic capac-
ity to form new intact cardiac tissue and that this
process is merely stimulated and directed by the
collagen/matrigel matrix. It is difficult to directly
follow the fate of the original collagen I, but it is
likely to be degraded to a large extent and partially
resynthesized during EHT formation. Others have
also found that neonatal rat cardiac cells form 3D
tissue-like structures, simply by cultivating them
in rotating culture vessels with polystyrene beads
[20]. The additional advantage of our protocol is
that EHT production can be easily controlled and
directed in terms of geometric form, size, and di-
rection of load. The latter is of tremendous impor-
tance. By subjecting EHT to phasic stretch con-
tractile force was increased >twofold (Fig. 2(c)). In
contrast, when EHTs are left unloaded during cul-
ture, retraction and macroscopically evident thick-
ening of the matrix can be observed and active
force development (twitch tension) ceases. In par-
allel, passive force (resting tension) increases dra-
matically.

The balance of twitch (TT) and resting ten-
sion (RT) is an important property of healthy car-
diac muscle [52]. Physiologically, the ratio of ac-
tive force to passive force (TT/RT) is >1 [52–54].
For EHT we reported a maximal TT of 2–3 mN
and a TT/RT ratio of 1.33, 3.29, and 14.02 un-
der basal conditions, maximal calcium, and maxi-
mal isoprenaline concentrations, respectively [32].
Others determined maximal TT of 0.02 mN and
a TT/RT ratio of 0.08 in cardiac tissue constructs
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Table 1. Contractile properties of engineered cardiac constructs reported in the literature

Study Construct TT (mN) RT (mN) TT/RT

Eschenhagen et al. [19] EHT planar (c) 0.34 ± 0.05 2.81 ± 0.11 0.12
Akins et al. [20] Polystyrene/Collagen (r) nd nd nd
Carrier et al. [22] Polyglycolic acid (c + r) nd nd nd
Fink et al. [24] EHT planar (c + r) 1.91 ± 0.16 nd nd
Leor et al. [25] Alginate (r) nd nd nd
Li et al. [26] Gelatin (r) nd nd nd
Zimmermann et al. [27] EHT planar (r) 0.51 ± 0.13 0.63 0.81
Kofidis et al. [29] Collagen (r) 0.019 ± 0.004 0.23 0.08
Shimizu et al. [31] Stacked monolayers (r) 1.18 ± 0.26 nd nd
Zimmermann et al. [32] EHT circular (r) 0.75 ± 0.11 0.15 ± 0.02 5

TT: maximal twitch tension, i.e. systolic force; RT: resting tension, i.e. diastolic force; TT/RT: ratio of TT and RT; nd: not determined; c: embryonic
chick cardiac myocytes; r: neonatal rat cardiac myocytes.

engineered by seeding cardiac myocytes onto a col-
lagen fleece [55]. The difference in contractile pa-
rameters is most likely due to a higher rigidity
of the preformed matrix and the lack of mechan-
ical load on the construct during culture. Inter-
estingly stacked monolayer constructs developed
TT comparable to EHT [31]. Diastolic forces were
not reported in this study. We observed a TT/RT
ratio of 0.12 when single cardiac myocyte mono-
layers were submitted to contraction experiments
(own unpublished data). Table 1 summarizes the
contractile properties of currently employed engi-
neered cardiac muscle constructs.

Factors that contribute to the load-induced in-
crease in contractile function are not only an im-
proved cell morphology and differentiation within
tissue constructs but also alignment of cells along
the axis of stretch [32]. Unloaded culture condi-
tions result in random orientation of cells and
a low degree of cardiac cell differentiation. The
latter appearance has been observed in most tis-
sue engineering approaches when preformed ma-
trices were employed. Recently, McDevitt et al.
reported that patterned scaffold material might
allow for guided cell growth and induce cardiac
myocyte differentiation [56]. This approach has
not yet been introduced into cardiac tissue engi-
neering, but might be feasible to improve cell mor-
phology and possibly function of cardiac muscle
constructs.

Cells for Cardiac Tissue Engineering

Another crucial aspect in cardiac tissue engineer-
ing is the choice and the composition of cells in
engineered heart constructs. Clearly, cardiac my-
ocytes have to be the main cellular component.
However, can the heart function without non-
cardiac myocytes? Endothelial cells, fibroblasts,
smooth muscle cells, neural cells, and leukocytes
comprise about 70% of the total cell number in
the working myocardium [45] and undoubtedly

play an important role in cardiac development and
function [57–59]. Endothelial cells and smooth
muscle cells, the main components of the vascu-
lature, are not only necessary for transport of nu-
trition and oxygen but also secrete growth factors
and cytokines that are important for heart func-
tion. Similarly, fibroblasts and leukocytes perma-
nently secrete growth factors and cytokines. When
EHT were constructed with a physiologic cell
mixture consisting of cardiac myocytes and non-
myocytes rather than a purified cardiac myocyte
population contractile function was markedly im-
proved [43] (Fig. 2(d)). The exact contribution of
each single cell type to tissue-formation has not
been thoroughly analyzed yet, but conceptionally
the data strongly suggest that formation of a true
cardiac tissue-like 3D construct requires the pres-
ence of cardiac myocytes and non-myocytes, ide-
ally in a physiological mix. If correct, this require-
ment imposes a major conceptional hurdle to the
whole field. Possible solutions may come from stem
cells that bear at least the potential to differen-
tiate into various cell types (see below). Alterna-
tively, it might be possible to generate relatively
simple constructs from pure cardiac myocyte pop-
ulations and hope that fibroblasts, smooth mus-
cles and endothelial cells and others invade the
construct after implantation.

Current tissue engineering approaches utilize
cardiac cells from neonatal rats or chicken. These
experiments are necessary as proof of principle,
but it is obvious that primary cardiac cells will
never be a cell source for cardiac tissue engineer-
ing in patients. The field relies therefore on stem
cells. Most experience has been accumulated with
skeletal myoblasts, i.e. muscle-resident satellite
cells. This cell type allows large scale propagation
in vitro and survives after injection in vivo. Skele-
tal myoblasts have been successfully implanted in
animal models and in patients [8,14]. Despite con-
cerns regarding the induction of arrhythmias clin-
ical trails are being conducted which will even-
tually clarify if such treatment is feasible, safe,
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and of benefit for the patient. So far, active con-
tractions of implanted myoblasts and true cell-cell
coupling has not been demonstrated. In fact, in
vivo injected myoblasts differentiate in myotubes
and not in cardiac myocytes and remain isolated
in the host myocardium [60]. The myotube phe-
notype precludes electrical coupling to the native
myocytes because they do not express connexin 43,
the main gap junction protein in cardiac myocytes.
Whether stable transgene expression of connexin
43 proteins in myoblasts can circumvent the natu-
rally occurring electrical isolation of myotubes and
cardiac myocytes remains to be demonstrated in
vivo [61]. Utilization of myoblast in cardiac tissue
engineering might be possible but has not been
performed so far.

The most promising cell sources for regenera-
tive medicine are embryonic and adult stem cells.
The enthusiasm about this approach has been
spurred by recent publications that demonstrated
the versatility of embryonic and adult stem cells
[62–65]. The capacity of murine embryonic stem
(ES) cells to differentiate into cardiac myocytes
has been demonstrated earlier [66,67]. The sub-
sequent demonstration of spontaneous differenti-
ation of human ES cells into the three germ lay-
ers [68] including the development of functional
cardiac myocytes [64] has opened the avenue to a
human cell source for cell based therapies includ-
ing cardiac tissue engineering. Unlimited differ-
entiation capacity and indefinite propagation rep-
resent the strongest advantages of ES cells. On
the other hand, their allogeneic nature, the po-
tential for tumor formation, and the low efficiency
of differentiation into cardiac myocytes are limit-
ing aspects. During the past 20 years, significant
progress with regard to the fundamental aspects
of ES-derived cardiac cell differentiation, culture
conditions, and methods to select for differentiated
cardiac myocytes has been made [68–74] and shall
be useful to define suitable culture conditions for
embryonic stem cells. However, in view of the au-
thors, the need for life-long immunosuppression
will finally preclude their clinical use. A potential
solution would come from nuclear transfer exper-
iments (“therapeutic cloning”), but beside unre-
solved ethical issues, fundamental biological and
technical questions remain unanswered.

Adult stem cells would be theoretically the
ideal choice. They can be derived from the pa-
tient and are therefore autologous in nature, no
ethical issues exist and tumor formation is un-
likely. Potential sources are bone marrow, periph-
eral blood, skeletal muscle and on the longterm,
placental cord blood. Recent evidence for an hith-
erto unexpected plasticity of adult stem cells [63]
strongly favor their use in tissue engineering and
gained much excitement. Yet, the true potential
of adult stem cells is far from being clear and

recent methodologically careful studies raised se-
rious doubts about the data and their interpre-
tation of some enthusiastic studies. For example,
whereas most investigators agree that transdiffer-
entiation of bone marror-derived stem cells into
cardiac myocytes prinicipally occurs, this event
has only been clearly observed after myocardial
injury and remains very rare (<0.02%) [75]. Sim-
ilarly, in contrast to one study that reported a fre-
quency of 18% [76], three studies found either no
[77] or only marginal [78,79] chimerism of car-
diac myocytes in the human heart after non-sex-
matched heart transplantations. Thus, at present
the crucial question remains whether it will ever
be possible to induce transdifferentiation of adult
stem cells at the necessary efficiency. It should
also be noted that most types of adult stem cells
have not been propagated in vitro with the excep-
tion of mesenchymal stem cells and skeletal my-
oblasts. Recent research effort focuses on growth
factors and culture conditions that promote car-
diac cell lineage commitment of stem cells [68,74]
and genes that may be introduced to induce car-
diac differentiation [70,72,73].

In this respect the observation that injured
myocardium appears to attract adult stem cells
to home to the myocardium and to transdiffer-
entiate in cardiac myocytes [12,15] is of signifi-
cant interest because it opens the way to mimic
those conditions in vitro. Recent in vivo stud-
ies have also demonstrated that the local car-
diac environment might drive differentiation of
implanted immature cardiac myocytes [9,17,34].
These studies suggest that it is not a single
factor but a whole concert of soluble factors
and cell-cell-interactions that is necessary for
(trans)differentiation, making a pure pharma-
cological approach unlikely to be efficient. En-
gineered heart tissue might offer an attractive
environment to trigger (trans)differentiation. Co-
culture models of undifferentiated stem cells with
non-myocytes of cardiac origin or rodent cardiac
myocytes in a 3D culture format are presently un-
der investigation to test this hypothesis directly.

Culture Conditions

One of the principal advantages of tissue engi-
neering is that viable and ischemia-tolerant cells
are being selected in vitro before implantation,
whereas injection of isolated cells leads to destruc-
tion of up to 95% of the injected cells during im-
plantation or shortly afterwards. Cell debris at the
injection site will trigger inflammatory responses
which have biological effects by itself. Indeed,
factors released during inflammation may affect
scar remodeling, have direct effects on contractile
function, and induce angiogenesis. Yet, it is un-
likely that these transient effects will contribute to
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improvement of contractile function in the long
run.

Loss in cell number is also observed during the
initial reconstitution of EHTs, but accounts only
for 50–70% and then cell number stabilizes during
culture (own unpublished data). Surviving cells
in tissue constructs most likely adapt to the new
environment of low oxygen tension and possibly
malnutrition in vitro and might be more robust if
implanted. Malnutrition might be caused by com-
promised diffusion into thick tissue constructs and
competition for nutrients among the cells in tis-
sue constructs. We could demonstrate earlier that
cell number is critical for construction of planar
EHT [27]. Whereas an increase in cell number be-
tween 1 and 2.5 × 106 cells/ml reconstitution mix
resulted in improved tissue-formation and force
development, EHTs did not beat when cell number
was increased to 3 × 106 and more. Thus, a criti-
cal cell density exists. Similar observations have
been made when geometric shape of EHT was al-
tered. This problem may be solved by composing
several EHTs of optimal size to a larger network.
Other strategies to improve tissue formation, cel-
lular differentiation, and contractile function of
EHTs that are currently under investigation are
different oxygen concentrations, medium compo-
sitions, growth factor supplements as well as sys-
tematic addition of various cardiac cell types. A
factor already noted as being very critical is me-
chanical load and here modifications of current
stretch protocols are being tested.

Immunological Barriers

An important obstacle in all types of cell based
therapies might be immune responses. Present
approaches will most likely fail in the clinic un-
less they are truly autologous in nature. Despite
a primary autologous approach, i.e. the donor is
also the recipient, the necessary cell propagation
is usually performed under in vitro conditions with
non-autologous culture supplements. For exam-
ple, serum from horse and calf could alter the
expression of self antigens and lead to impreg-
nation. The immunologically altered cells would
induce immune responses and be amenable to re-
jection. Indeed, when EHT reconstituted from Fis-
cher 344 cells and Fischer 344 collagen were im-
planted in syngenic Fischer 344 rats rejection was
observed [34]. Prolonged washes prior to implan-
tation did not reduce the immune response. Sur-
vival of implants was achieved by sustained im-
munosuppression with parenteral application of
ciclosporine, azathioprine, and prednisolone. Un-
resolved immunological problems have recently
diminished the enthusiasm about xenotransplan-
tation and will be an important aspect in all cell

based therapies that needs to be taken into con-
sideration.

Perspectives of Cardiac Tissue Engineering

Cardiac tissue engineering is a young field, many
important obstacles exist and any prediction re-
main speculative at present. We believe that cul-
ture conditions and many technical aspects are
likely to be resolved and that the perspective to
create true cardiac tissue patches that can be sur-
gically applied is realistic and represents a clear
conceptional advantage over injections of isolated
cells. The main hurdle, however, is shared by all
cell-based therapies and this is the unresolved
question of optimal cell sourcing. Here a long way
has to be gone and it is difficult to make any reli-
able prediction. In our view, it is not yet the time
for clinical experiments but for careful evaluation
of cardiac cell biology, stem cell biology, and the
conditions that promote (trans)differentiation into
the various cardiac cells. In cardiology, where tra-
ditional pharmacological and surgical therapies
have significantly reduced mortality, improved
quality of life, and survival of patients with heart
disease, any cell-based therapy has to be evalu-
ated rigorously in comparison to classical treat-
ment options. The place for cardiac tissue engi-
neering could be corrections of heart defects in
children and terminal stages of ischemic heart
diesease and heart failure rather than mild forms
of heart disease where other safe treatment op-
tions exist. Consequently, the aim would be the
repair of rather large tissue defects. In the view
of the authors, this can only be accomplished by
tissue engineering and appropriate surgical at-
tachment of engineered muscle constructs to the
diseased myocardium.

Conclusion

Despite major barriers there is reason for some
optimism that cell based therapies and especially
tissue engineering could find their place in the
treatment of malignant cardiovascular diseases.
The following years will bring about new in-
sights into this fascinating field and hopefully an-
swers regarding the optimal scaffold, a cell source
that is autologous and unlimited, optimized meth-
ods to generate large tissue constructs with rel-
evant contractile properties, and eventually sur-
gical techniques to replace or substitute diseased
myocardium with engineered cardiac muscle con-
structs. An interdisciplinary effort of basic scien-
tists and clinicians will be necessary to achieve
this goal.
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